Применение полифосфата натрия в химводоподготовке: особенности, практика, и экономическая эффективность

А.Н.Феденко, генеральный директор, ООО «Роспласт»

Обработка воды в промышленных замкнутых системах энергетики и водотеплоснабжения сложная и довольно дорогостоящая задача. В теплоносителе этих систем происходит концентрация примесей (анионов, катионов, взвешенных частиц), превышающая пределы их растворимостей. В результате они образуют твердую накипь, мешают теплоотдаче и снижают производительность котлов на 10-20 % и более.

Неправильная химводоподготовка или ее отсутствие может привести и к аварийной ситуации на предприятии.

Данной публикацией мы хотели бы поделиться опытом использования полифосфата (гексаметафосфат натрия) ГОСТ 20291-80 (далее ПФН) на предприятия теплоэнергоснабжения страны.

Свойства ПФН

Полифосфат (ПФН) имеет крупно кристаллический вид, хорошо растворим в воде, при помешивании и для удобства в применении в настоящее время выпускается в измельченном виде.

ПФН отличается хорошей растворимостью и способностью образовывать водорастворимые комплексы (хелаты) с солями Ca, Mд, Pe, Pb, Co", N1, Hд.

На рис. 1 приводятся данные, характеризующие величину связывания ионов Са, Мд, Ре, некоторыми наиболее распространенными фосфатами, применяемыми в энергетических установках для химводоподготовки. Расчет приведен по образованию комплексов при комнатной температуре.

Хелатная способность фосфатов

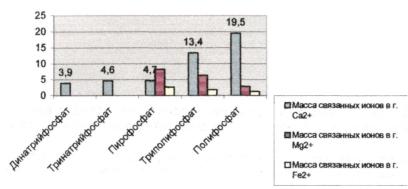


Рис. 1. Хелатная способность фосфатов.

Уникальным свойством неорганического полимера является его способность сохранять полимерное строение, как в твердом состоянии, так и в водных растворах и расплавах.

Полифосфат натрия является наиболее активным водоумягчающим средством, т.к. образует устойчивые комплексы за более короткое время и при более низких температурах (20-40 °C), чем триполифосфат натрия (ТПФН) и другие фосфаты.

Преимуществом полифосфата натрия, перед тринатрийфосфатом (ТНФ), является более высокое содержание фосфата в перерасчете на P_2O_5 - более 63 %. По сравнению с ПФН в ТНФ содержание фосфатов в перерасчете на P_2O_5 не превышает 25 %. Рекомендации и нормативные документы указывают, что нормы внесения ПФН в 3-4 раза меньше, чем у ТНФ.

К преимуществам ПФН так же относится более низкая слеживаемость при хранении, антикоррозионные свойства, способность снижения железно-окисного и медного накипеобразования на внутренних поверхностях нагрева котлов.

Хелатная способность (способность образовывать водорастворимые комплексы, устойчивость которых составляет более 1 года) позволяет вносить ПФН всего один раз за весь отопительный сезон. Для сравнения: устойчивость комплексов триполифосфата натрия составляет от 2 до 6 месяцев, а тринатрийфосфата еще меньше.

К недостаткам следует отнести пониженное значение pH водных растворов (pH \sim 7,5), а также более сложный анализ концентрации водных растворов, снижение щелочности котловой воды. Значение pH раствора ПФH составляет 7,5-8,0 против pH 11-12 у THФ. Для поднятия величины pH в рабочий раствор ПФH, можно добавлять тринатрийфосфат в небольшом количестве (около 50 г на 1 м $^{\rm 3}$

раствора). Наше предприятие может выпускать готовые смеси на основе ПФН с заданными показателями требуемых значений рН и в зависимости от степени жесткости потребляемой воды.

Следует отметить отсутствие коррозионной активности раствора ПФН. Расчетами института «НИИП4ПРОХИМ» г. Санкт-Петербург подтверждаются антикоррозионные свойства ПФН и даются рекомендации по включению его в рецептуры промышленных ингибиторов.

Проводимые исследования ингибиторов коррозии с ПФН показывают снижение темпов коррозии в водооборотных системах предприятия от 0,6 мм до 0,1 мм в год. Для предотвращения коррозии углеродистых сталей в воде достаточна концентрация ПФН менее 10 мг/л в зависимости от жесткости воды.

Практика применения

Предприятиями-потребителями приводится следующая технология применения ПФН. В период проведения производственных испытаний ПФН на Закамской ТЭЦ-5 АО «Пермэнерго» в работе постоянно находилось 3 котла с общей паропроизводительностью 400-500 т/ч (продувка - 8-12 %).

Приготовление раствора производится в баках-мешалках. Баки оборудованы дренажом, подводом коагулированной воды и пара 1.2 атм. Для хранения готового раствора имеются баки-мерники.

Подача фосфатного раствора на котлы осуществляется по индивидуально-групповой схеме. Из баков-мерников рабочий раствор подается на вход насосов-дозаторов, работающих на общий коллектор. В коллектор через обратный клапан подается питательная вода. Через регулирующие вентиля и ограничительные шайбы сту 3 мм разбавленный фосфатный раствор распределяется по работающим котлам.

Концентрация рабочего раствора тринатрийфосфата перед испытанием составляла 0,5-0,6 % по РОД В сравнительных испытаниях в мешалку $V = 6.2 \text{ m}^3$ загружали 30 кг ПФН вместо 114 кг ТНФ.

Полифосфат достаточно быстро растворился при небольшом подогреве. Концентрация полученных растворов составляла 0,62-0,65~% по $P0_4^{"3}$.

Чтобы не менять установленную производительность насосов-дозаторов, концентрация рабочих растворов полифосфата рассчитывается исходя из процента содержания активного вещества - $P0_4^3$ в рабочих растворах полифосфата и ранее использовавшихся реагентов должна быть одинаковой.

Следует отметить, что для приготовления рабочих растворов фосфата любого типа, особенно тринатрийфосфата, следует использовать **химочищенную воду или** конденсат, т.к. **при использовании** сырой воды идет образование осадка фосфатов кальция, что приводит к заносу дренажных систем.

При испытаниях отмечено, что снижение щелочности котловой воды в котлах со щелочностью подпиточной воды 0,3 мг-экв/л при переходе с тринатрийфосфата на полифосфат крайне незначительно - по соленым отсекам разница составляет не боле 0,2-0,4 мг-экв/л, что ниже точности анализа.

Нашими потребителями, использующими ПФН уже на протяжении нескольких лет, являются такие предприятия как ГП «Сибирский химкомбинат», большинство АЭС России, энергетические системы АО Казаньоргсинтеза и АО Киришиоргсинтеза. Эти предприятия положительно отзываются об эффективности применения ПФН, как в технологическом, так и экономическом аспектах.

Выводы

- 1. Полифосфат натрия самый концентрированный фосфат из промышленно выпускаемых фосфатов.
- 2. Расчетная экономия при использовании ПФН составляет 6000-7000 руб на тонну потребляемого ТНФ. При применении триполифосфата экономия составляет 900-1200 руб./т.
- 3. Полифосфат является ингибитором коррозии. Для предупреждения коррозии трубопроводов, особенно в условиях мягкой воды, рекомендуется поддерживать содержание полифосфата на уровне 2-3 кг / м³ воды или 0,2-0,3 % веса проточной воды и рH=7-8.
- 4. Уменьшение отложений Са в трубопроводах, при применении ПФН, продлевает ресурс котлов, препятствует снижению теплопроизводительности водонагревателей и пропускной способности трубопроводов.
- 5. ПФН может использоваться в индивидуальном теплоснабжении частных сооружений и требует однократного внесения, за отопительный сезон.
- 6. Следует отметить, что полифосфат не токсичен и биологически разлагаем.

Литература

- 1. Ю.Ф.Жданов «Химия и технология полифосфатов». «Химия» 1979 г.
- 2. М.С.Бабурина «Свойства и применение гексаметафосфата натрия». «Ниигипрохим-наука» 2000 г.
- 3. В.И.Матасов Рекомендации по использованию полифосфата натрия для